

PHYSICS DIVISION/ **ACCELERATOR R&D CAPABILITIES**

MICHAEL KELLY

Accelerator Development Group Leader Physics Division

2018 Midwest Regional Workshop on Accelerator Stewardship Test Facility Program

Thursday Dec. 6, 2018

Faces of Accelerator R&D in Physics Division

Mike Kelly

Zack Conway

Tom Reid

Mark Kedzie

Jake Kilbane

Gary Zinkann

Students: Joe BeLow **Aziz Abogoda Zamin Noorani**

A Few Bits of History From ATLAS and Physics Division

https://www.anl.gov/atlas

Argonne 📤

Capabilities: Superconducting Cavity Processing and Testing

Argonne superconducting cavity processing facility

- Presently working LCLS-II-HE R&D
- ~100 cavity processing procedure/yr

(ADTF) ANL cavity cold testing facility with large diameter cryostat and helium refrigerator (FRIB cavity here)

Capabilities: Ion Linac R&D, Design and Construction

ATLAS Intensity Upgrade 72 MHz Quarter-Wave Resonator Cryomodule (2014); technology for high intensity ion linac

ATLAS 109 MHz Quarter-wave Cryomodule (2009); AIP 2017-19

Capabilities: Electron Linac Technology

A bare superconducting electron accelerator cavity built in industry and processed at Argonne

A dressed (finished) LCLS-II superconducting electron accelerator cavity built in industry and processed at Argonne

Capabilities: Cavity Processing for ATLAS, PIP-II, APS, LCLS-II, FRIB, EIC, HL-LHC

PRESENT : Priority Activities

PRESENT: ANL-PHY support of Proton Improvement Plan – II (PIP-II)

- ■ANL designed/built 1st cryomodule in PIP-II superconducting linac
- >1 MW of proton beam power in support of the U.S. neutrino program
- Cryomodule delivery to Fermilab in 2019

PRESENT: Bunch Lengthening Superconducting Cavity APS-Upgrade

- Practical benefit to all APS-U users by increasing beam lifetime;
- High priority at ANL and DOE
- **■**Completion in 2023

FUTURE: Advancing Technology for ATLAS and other DOE Accelerators

Technologies in support of the ATLAS Multi-User Upgrade (FY20-22)

Interaction Point

8-100 GeV Ion Collider Ring

From AGS

FUTURE

We are eager to work with industry/private sector partners on superconducting RF and related accelerator technologies:

- Basic science
- Medicine/Isotopes
- •Industry
- Energy production
- National security

